Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let d ∈ R, and A = [-2&4+d&( sinθ)-2 1&( sinθ)+2&d 5&(2 sinθ)-d&(- sinθ)+2 +2d] , θ∈ [0,2π] . If the minimum value of det(A) is 8, then a value of d is :
Q. Let
d
∈
R
, and
A
=
⎣
⎡
−
2
1
5
4
+
d
(
sin
θ
)
+
2
(
2
sin
θ
)
−
d
(
sin
θ
)
−
2
d
(
−
sin
θ
)
+
2
+
2
d
⎦
⎤
,
θ
∈
[
0
,
2
π
]
. If the minimum value of
d
e
t
(
A
)
is
8
, then a value of
d
is :
3657
178
JEE Main
JEE Main 2019
Determinants
Report Error
A
−
7
5%
B
2
(
2
+
2
)
27%
C
−
5
45%
D
2
(
2
+
1
)
23%
Solution:
\operatorname{det} A=\left|\begin{array}{ccc}
-2 & 4+d & \sin \theta-2 \\
1 & \sin \theta+2 & d \\
5 & 2 \sin \theta-d & -\sin \theta+2+2 d
\end{array}\right|
(
R
1
→
R
1
+
R
3
−
2
R
2
)
=\left|\begin{array}{ccc}
1 & 0 & 0 \\
1 & \sin \theta+2 & d \\
5 & 2 \sin \theta-d & 2+2 d-\sin \theta
\end{array}\right|
=
(
2
+
sin
θ
)
(
2
+
2
d
−
sin
θ
)
−
d
(
2
sin
θ
−
d
)
=
4
+
4
d
−
2
sin
θ
+
2
sin
θ
+
2
d
s
in
θ
−
sin
2
θ
−
2
d
sin
θ
+
d
2
=
d
2
+
4
d
+
4
−
sin
2
θ
=
(
d
+
2
)
2
−
sin
2
θ
For a given d, minimum value of
det
(
A
)
=
(
d
+
2
)
2
−
1
=
8
⇒
d
=
1
or
−
5