Q. Let $d \in R$, and $A = \begin{bmatrix}-2&4+d&\left(\sin\theta\right)-2\\ 1&\left(\sin\theta\right)+2&d\\ 5&\left(2\sin\theta\right)-d&\left(-\sin\theta\right)+2 +2d\end{bmatrix} , \theta\in \left[0,2\pi\right] $. If the minimum value of $det(A)$ is $8$, then a value of $d$ is :
Solution: