Q.
Let d be the perpendicular distance from the centre of the ellipse x2/a2+y2/b2=1 to the tangent drawn at a point P on the ellipse. If F1 and F2 are the two foci of the ellipsë, then show that (PF1−PF2)2=4a2(1−d2b2)
Let the coordinates of point P be (acosθ,bsinθ).
Then, equation of tangent at P is axcosθ+bysinθ=1....(i)
We have, d= length of perpendicular from O to the tangent at P d=a2cos2θ+b2sin2θ∣0+0−1∣⇒d1=a2cos2θ+b2sin2θ ⇒d21=a2cos2θ+b2sin2θ
We have to prove (PF1−PF2)2=4a2(1−d2b2)
Now, RHS=4a2(1−d2b2) =4a2−d24a2b2 =4a2−4a2b2(a2cos2θ+b2sin2θ) =4a2−4b2cos2θ−4a2sin2θ =4a2(1−sin2θ)−4b2cos2θ =4a2cos2θ−4b2cos2θ =4cos2θ(a2−b2)=4cos2θ⋅a2e2[∵e=1−(b/a)2]
Again, PF1=e∣acosθ+a∣e∣ =a∣ecosθ+1∣ =a(ecosθ+1) [∵−1≤cosθ≤1 and 0<e<1]
Similarly, PF2=a(1−ecosθ)
Therefore, LHS =(PF1−PF2)2 =[a(ecosθ+1)−a(1−ecosθ)]2 =(aecosθ+a−a+aecosθ)2 =(2aecosθ)2=4a2e2cos2θ
Hence, LHS = RHS