Q.
Let d be the perpendicular distance from the centre of the ellipse a2x2+b2y2=1 to the tangent drawn at a point P on the ellipse. If F1 and F2 be the foci of the ellipse, then
(PF1−PF2)2=
Let the point P be (acosθ,bsinθ) The equation of tangent at P is axcosθ+bysinθ=1...(1)
If d be the length of perpendicular from the centre C(0,0) of the ellipse to the tangent given by (1) then d=a2cos2θ+b2sin2θ1⇒d21=a2cos2θ+b2sin2θ ⇒d2b2=a2b2cos2θ+1−cos2θ ⇒1−d2b2=(1−a2b2)cos2θ=e2cos2θ...(2)
Now, (PF1−PF2)2=(2aecosθ)2=4a2e2cos2θ=4a2(1−d2b2)