Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let d be the perpendicular distance from the centre of the ellipse x2a2+y2b2=1 to the tangent drawn at a point P on the ellipse. If F1 and F2 be the foci of the ellipse, then (PF1PF2)2=

Conic Sections

Solution:

image
Let the point P be (acosθ,bsinθ) The equation of tangent at P is
xcosθa+ysinθb=1...(1)
If d be the length of perpendicular from the centre C(0,0) of the ellipse to the tangent given by (1) then
d=1cos2θa2+sin2θb21d2=cos2θa2+sin2θb2
b2d2=b2a2cos2θ+1cos2θ
1b2d2=(1b2a2)cos2θ=e2cos2θ...(2)
Now,
(PF1PF2)2=(2aecosθ)2=4a2e2cos2θ=4a2(1b2d2)