Q.
Let d1 and d2 be the lengths of the perpendiculars drawn from any point of the line 7x−9y+10=0 upon the lines 3x+4y=5 and 12x+5y=7 respectively. Then
Let (h,k) be any point on the line 7x−9y+10=0,
then 7h−9k+10=0 ⇒7h=9k−10 ⇒h=79k−10 ... (i)
Now, perpendicular distance from point (h,k)
to the line 3x+4y=5 is d1 d1=32+423h+4k−5 ⇒d1=53h+4k−5 ⇒d1=53h+4k−5 ... (ii)
and perpendicular distance from (h,k) to the line 12x+5y=7 is d2 ∴d2=122+5212h+5k−7 ⇒d2=1312h+5k−7 ... (iii)
Now, d1−d2=53h+4k−5−1312h+5k−7 ⇒d1−d2 =6513(3h+4k−5)−5(12h+5k−7) =6539h+52k−65−60h−25k+35 =65−21h+27k−30 =65−21(79k−10)+27k−30 =65−27k+30+27k−30=0 [fromEq.(i)]
⇒d1−d2=0 ⇒d1=d2