Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let d1 and d2 be the lengths of the perpendiculars drawn from any point of the line 7x - 9y + 10 = 0 upon the lines 3x + 4y = 5 and 12x + 5y = 7 respectively. Then
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $d_1$ and $d_2$ be the lengths of the perpendiculars drawn from any point of the line $7x - 9y + 10 = 0$ upon the lines $3x + 4y = 5$ and $12x + 5y = 7$ respectively. Then
WBJEE
WBJEE 2017
Straight Lines
A
$d_1 > d_2$
B
$d_1 = d_2$
C
$d_1 < d_2$
D
$d_1 = 2d_2$
Solution:
Let $(h, k)$ be any point on the line $7 x-9 y+10=0$,
then $7 h-9 k+10=0$
$\Rightarrow 7 h =9 k-10$
$\Rightarrow h =\frac{9 k-10}{7}$ ... (i)
Now, perpendicular distance from point $(h, k)$
to the line $3 x+4 y=5$ is $d_{1}$
$ d_{1}=\frac{3 h+4 k-5}{\sqrt{3^{2}+4^{2}}} $
$\Rightarrow d_{1}=\frac{3 h+4 k-5}{5}$
$\Rightarrow d_{1}=\frac{3 h+4 k-5}{5}$ ... (ii)
and perpendicular distance from $(h, k)$ to the line $12 x+5 y=7$ is $d_{2}$
$\therefore d_{2}=\frac{12 h+5 k-7}{\sqrt{12^{2}+5^{2}}} $
$\Rightarrow d_{2}=\frac{12 h+5 k-7}{13}$ ... (iii)
Now, $d_{1}-d_{2}=\frac{3 h+4 k-5}{5}-\frac{12 h+5 k-7}{13}$
$\Rightarrow d_{1}-d_{2}$
$=\frac{13(3 h+4 k-5)-5(12 h+5 k-7)}{65}$
$=\frac{39 h+52 k-65-60 h-25 k+35}{65}$
$=\frac{-21 h+27 k-30}{65}$
$=\frac{-21\left(\frac{9 k-10}{7}\right)+27 k-30}{65} $
$=\frac{-27 k+30+27 k-30}{65}=0$ [fromEq.(i)]
$\Rightarrow d_{1}-d_{2}=0 $
$\Rightarrow d_{1}=d_{2}$