Q.
Let Cr denote the binomial coefficient of xr in the expansion of (1+x)10. If α,β∈R. C1+3⋅2C2+5⋅3C3+… upto 10 terms =2β−1α×211(C0+2C1+3C2+…. upto 10 terms ) then the value of α+β is equal to
(1+x)10=C0+C1x+C2x2+……+C10x10
Differentiating 10(1+x)9=C1+2C2x+3C3x2+….+10C10x9
replace x→x2 10(1+x2)9=C1+2C2x2+3C3x4+…+10C10x18 10⋅x(1+x2)9=C1x+2C2x3+3C3x5+…+10C10x19
Differentiating 10((1+x2)9⋅1+x⋅9(1+x2)82x) =C1x+2C2⋅3x3+3⋅5⋅C3x4+….+10⋅19C10x18
putting x=1 10(29+18⋅28) =C1+3⋅2⋅C2+5⋅3⋅C3+…+19⋅10⋅C10 C1+3⋅2⋅C2+……+19⋅10⋅C10 =10⋅29⋅10=100⋅29 C0+2C1+3C2+….+11C9=11211−2
Now, 100⋅29=2β−1α⋅211(11211−2)
Eqn. of form y=k(2x−1).
It has infinite solutions even if we take x,y∈N.