Q. Let $C _{ r }$ denote the binomial coefficient of $x ^{ r }$ in the expansion of $(1+x)^{10}$. If $\alpha, \beta \in R$. $C_{1}+3 \cdot 2 C_{2}+5 \cdot 3 C_{3}+\ldots$ upto $10$ terms $=\frac{\alpha \times 2^{11}}{2^{\beta}-1}\left( C _{0}+\frac{ C _{1}}{2}+\frac{ C _{2}}{3}+\ldots .\right.$ upto $10$ terms $)$ then the value of $\alpha+\beta$ is equal to
Solution: