Q.
Let α,β,γ and δ be the roots of equation x4−3x3+5x2−7x+9=0. If the value of ∣∣tan(tan−1α+tan−1β+tan−1γ+tan−1δ)∣∣=ba where a and b are coprime to each other, then find the value of (ab+ba+aa+bb+ab).
From given equation, we have S1=Σα=3,S2=Σαβ=5 S3=Σαβγ=7 and S4=αβγδ=9
Let tan−1α=A,tan−1β=B,tan−1γ=C&tan−1δ=D
Now ∣∣tan(tan−1α+tan−1β+tan−1γ+tan−1δ)∣∣ =∣tan(A+B+C+D)∣=∣∣1−S2+S4S1−S3∣∣=∣∣1−5+93−7∣∣=54=ba
Hence a=4 and b=5
So (ab+ba+aa+bb+ab)=45+54+44+55+4.5=1024+625+256+3125+20=5050