Q. Let $\alpha, \beta, \gamma$ and $\delta$ be the roots of equation $x^4-3 x^3+5 x^2-7 x+9=0$. If the value of $\left|\tan \left(\tan ^{-1} \alpha+\tan ^{-1} \beta+\tan ^{-1} \gamma+\tan ^{-1} \delta\right)\right|=\frac{ a }{ b }$ where a and $b$ are coprime to each other, then find the value of $\left(a^b+b^a+a^a+b^b+a b\right)$.
Inverse Trigonometric Functions
Solution: