Q.
Let α,β and γ be the roots of f(x)=0 , where f(x)=x3+x2−5x−1 . Then the value of [α]+[β]+[γ] is equal to (where [⋅] denotes the greatest integer function)
f(x)=x3+x2−5x−1f′(x)=3x2+2x−5=(x−1)(3x+5) x=−35→ point of local maxima, x=1→ point of local minima,
Increasing function in (−∞,−35)∪(1,∞)
Decreasing function in (−35,1)
Also, f(0)=−1,f(1)=−4,f(2)=1,f(−1)=4 f(−2)=−8+4+10−1=5 f(−3)=−27+9+15−1=−4 ⇒α∈(−3,−2);β∈(−1,0);γ∈(1,2) ⇒[α]=−3,[β]=−1,[γ]=1 ⇒[α]+[β]+[γ]=−3