Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $\alpha ,\beta $ and $\gamma $ be the roots of $f\left(x\right)=0$ , where $f\left(x\right)=x^{3}+x^{2}-5x-1$ . Then the value of $\left[\alpha \right]+\left[\beta \right]+\left[\gamma \right]$ is equal to (where $\left[\cdot \right]$ denotes the greatest integer function)

NTA AbhyasNTA Abhyas 2022

Solution:

$f\left(x\right)=x^{3}+x^{2}-5x-1$ $f^{'}\left(x\right)=3x^{2}+2x-5=\left(x - 1\right)\left(3 x + 5\right)$
Solution
$x=-\frac{5}{3} \rightarrow $ point of local maxima,
$x=1 \rightarrow $ point of local minima,
Increasing function in $\left(- \infty , - \frac{5}{3}\right)\cup\left(1 , \infty\right)$
Decreasing function in $\left(- \frac{5}{3} , 1\right)$
Solution
Also, $f\left(0\right)=-1,f\left(1\right)=-4,f\left(2\right)=1,f\left(- 1\right)=4$
$f\left(- 2\right)=-8+4+10-1=5$
$f\left(- 3\right)=-27+9+15-1=-4$
$\Rightarrow \alpha \in \left(- 3 , - 2\right);\beta \in \left(- 1,0\right);\gamma \in \left(1 ,2\right)$
$\Rightarrow \left[\alpha \right]=-3,\left[\beta \right]=-1,\left[\gamma \right]=1$
$\Rightarrow \left[\alpha \right]+\left[\beta \right]+\left[\gamma \right]=-3$