Q. Let $\alpha$ be a root of the equation $(a-c) x^2+(b-a) x+(c-b)=0$ where $a , b , c$ are distinct real numbers such that the matrix $\begin{bmatrix}\alpha^2 & \alpha & 1 \\ 1 & 1 & 1 \\ a & b & c\end{bmatrix}$ is singular. Then, the value of $\frac{(a-c)^2}{(b-a)(c-b)}+\frac{(b-a)^2}{(a-c)(c-b)}+\frac{(c-b)^2}{(a-c)(b-a)}$ is
Solution: