Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α=(-1+i√3/2). If a=(1+α) displaystyle ∑k=0100α2k and displaystyle ∑k=0100α3k, then a and b are the roots of the quadratic equation :
Q. Let
α
=
2
−
1
+
i
3
.
If
a
=
(
1
+
α
)
k
=
0
∑
100
α
2
k
and
k
=
0
∑
100
α
3
k
, then a and b are the roots of the quadratic equation :
2720
210
JEE Main
JEE Main 2020
Complex Numbers and Quadratic Equations
Report Error
A
x
2
+
101
x
+
100
=
0
11%
B
x
2
+
102
x
+
101
=
0
13%
C
x
2
−
102
x
+
101
=
0
46%
D
x
2
−
101
x
+
100
=
0
29%
Solution:
α
=
ω
a
=
(
1
+
ω
)
(
1
+
ω
2
+
ω
4
+
.....
+
ω
200
)
a
=
(
1
+
ω
)
1
−
ω
2
(
1
−
(
ω
2
)
101
)
=
1
b
=
1
+
ω
3
+
ω
6
+
……
+
ω
300
=
101
x
2
−
102
x
+
101
=
0