Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $\alpha=\frac{-1+i\sqrt{3}}{2}.$ If
$a=\left(1+\alpha\right)$ $\displaystyle \sum_{k=0}^{100}\alpha^{2k} $ and $\displaystyle \sum_{k=0}^{100}\alpha^{3k}$, then a and b are the roots of the quadratic equation :

JEE MainJEE Main 2020Complex Numbers and Quadratic Equations

Solution:

$\alpha = \omega$
$a = \left(1 + \omega \right)\left(1 + \omega^{ 2} + \omega ^{4} + ..... + \omega ^{200}\right)$
$a = \left(1+\omega \right) \frac{\left(1-\left(\omega ^{2}\right)^{101}\right)}{1-\omega ^{2}} = 1$
$b = 1+\omega ^{3}+\omega ^{6}+\ldots\ldots+\omega ^{300} = 101$
$x^{2} - 102x + 101 = 0$