- Tardigrade
- Question
- Mathematics
- Let α1, β1(α1<β1) be the roots of the equation x2-b x+1=0 and α2, β2(α2<β2) be the roots of the equation ax 2+ bx +2=0 such that (α1+α2/α1 α2)=(β1+β2/β1 β2)=1. List I List II P The value of a equals 1 -4 Q The value of b equals 2 1 R The value of (β1+2 α2) equals 3 3 S The value of (α1-2 α2) equals 4 4
Q.
Let be the roots of the equation and be the roots of the equation such that .
List I
List II
P
The value of a equals
1
-4
Q
The value of equals
2
1
R
The value of equals
3
3
S
The value of equals
4
4
List I | List II | ||
---|---|---|---|
P | The value of a equals | 1 | -4 |
Q | The value of equals | 2 | 1 |
R | The value of equals | 3 | 3 |
S | The value of equals | 4 | 4 |
Solution: