Q.
Let $\alpha_1, \beta_1\left(\alpha_1<\beta_1\right)$ be the roots of the equation $x^2-b x+1=0$ and $\alpha_2, \beta_2\left(\alpha_2<\beta_2\right)$ be the roots of the equation $ax ^2+ bx +2=0$ such that $\frac{\alpha_1+\alpha_2}{\alpha_1 \alpha_2}=\frac{\beta_1+\beta_2}{\beta_1 \beta_2}=1$.
List I
List II
P
The value of a equals
1
-4
Q
The value of $b$ equals
2
1
R
The value of $\left(\beta_1+2 \alpha_2\right)$ equals
3
3
S
The value of $\left(\alpha_1-2 \alpha_2\right)$ equals
4
4
List I | List II | ||
---|---|---|---|
P | The value of a equals | 1 | -4 |
Q | The value of $b$ equals | 2 | 1 |
R | The value of $\left(\beta_1+2 \alpha_2\right)$ equals | 3 | 3 |
S | The value of $\left(\alpha_1-2 \alpha_2\right)$ equals | 4 | 4 |
Complex Numbers and Quadratic Equations
Solution: