Q.
Let ABC be an equilateral triangle, let KLMN be a rectangle with K,L on BC,M on AC and N on AB Suppose AN/NB=2 and the area of ΔBKN is 6 the area of the ΔABC is
Given, ABC is an equilateral triangle ∴AB=BC=AC KLMN be a rectangle ∴KL=MN
and NK=LM NBAN=2 ∴AN=2NB=AM=MN AB=AN+NB=3NB
Area of ΔBKN=6
In ΔBKN, sin60∘=BNNK ⇒NK=23BN
Area of ΔBKN=21⋅BN⋅NKsin30∘ ⇒6=21.BN.23.BN.21 ⇒BN2=348 ∴ Area of ΔABC=43×AB2 =43×9BN2=43×9×348=108