Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let ABC be a triangle such that BC = vec a , CA = vec b , AB = vec c ,| vec a |=6 √2,| vec b |=2 √3 and vec b ⋅ vec c =12 Consider the statements: (S1): |( vec a × vec b )+( vec c × vec b )|-| vec c |=6(2 √2-1) (S2): angle ABC = cos -1(√(2/3)). Then
Q. Let
A
BC
be a triangle such that
BC
=
a
,
C
A
=
b
,
A
B
=
c
,
∣
a
∣
=
6
2
,
∣
b
∣
=
2
3
and
b
⋅
c
=
12
Consider the statements :
(
S
1
)
:
∣
(
a
×
b
)
+
(
c
×
b
)
∣
−
∣
c
∣
=
6
(
2
2
−
1
)
(
S
2
)
:
∠
A
BC
=
cos
−
1
(
3
2
)
. Then
304
128
JEE Main
JEE Main 2022
Vector Algebra
Report Error
A
both (S1) and (S2) are true
B
only (S1) is true
C
only (S2) is true
D
both (S1) and (S2) are false
Solution:
a
+
b
+
c
=
0
b
+
c
=
−
a
∣
b
∣
2
+
∣
c
∣
2
+
2
b
⋅
c
=
∣
a
∣
2
∣
c
∣
2
=
36
∣
c
∣
2
=
6
S
1
:
∣
a
×
b
+
c
×
b
∣
−
∣
c
∣
∣
(
a
+
c
)
×
b
∣
−
∣
c
∣
∣
−
b
×
b
∣
−
∣
c
∣
0
−
6
=
−
6
S
2
:
a
+
b
+
c
=
0
b
+
c
=
−
a
∣
a
∣
2
+
∣
b
∣
2
−
2∣
a
∣∣
b
∣
cos
(
∠
A
CB
)
=
∣
c
∣
2
cos
(
∠
A
CB
)
=
3
2