Given,
Point P inside the ΔABC such that PA+2PB+3PC=0
Let PA=a−P PB=b−P PC=c−P ∴(a−p)+2(b−p)+3(c−P)=0 ⇒a+2b+3c=3P ⇒p=6a+2b+3c
Area of ΔAPC=21∣a×P+P×c+c×a∣ =21∣∣a×6(a+2b+3c)+6(a+2b+3c)×c+c×a∣∣ =2×61∣2(a×b)+3(a×c)+(a×c)+2(b×c)+6c×a∣ =61∣a×b+b×c+c×a∣ ∴Area of Δ APCArea of Δ ABC=61∣a×b+b×c+c×a∣21∣a×b+b×c+c×a∣=3 ∴ Ratio =3:1