Q.
Let a triangle ABC be inscribed in a circle of radius 2 units. If the 3 bisectors of the angles A,B and C are extended to cut the circle at A1,B1 and C, respectively, then the value of [sinA+sinB+sinCAA1cos2A+BB1cos2B+CC1cos2C]2=
Let the ΔABC is equilateral. ⇒A=B=C=60∘
and AA1=BB1=CC1= Diameter =4 ∴[sinA+sinB+sinCAA1cos2A+BB1cos2B+CC1cos2C]2 =[sin60∘+sin60∘+sin60∘(4)cos30∘+4cos30∘+4cos30∘]2 =[2334(23+23+23)]2 =[3234×323]2=(4)2=16