Q.
Let a triangle $A B C$ be inscribed in a circle of radius $2$ units. If the $3$ bisectors of the angles $A, B$ and $C$ are extended to cut the circle at $A_{1}, B_{1}$ and $C$, respectively, then the value of
$\left[\frac{AA_{1}\cos \frac{A}{2} +BB_{1} \cos \frac{B}{2}+CC_{1} \cos \frac{C}{2}}{\sin A +\sin B +\sin C}\right]^{2} = $
AP EAMCETAP EAMCET 2019
Solution: