Let fn(x)=x∫2xe−t2dt fn′(x)=2⋅e−(2x)n−e−xn
For maxima and minima, fn′(x)=0⇒2e−(2x)n=e−xn⇒2⋅e−(2nxn)=e−xn Taking log on both sides, we get ln2−2nxn=−xn⇒ln2=xn(2n−1)⇒xn=2n−1ln2⇒x=(2n−1ln2)n1=an
Also, fn′′(x=(2n−1ln2)n1)<0⇒fn(x) is maximum at x=(2n−1ln2)n1.
Now, lnan=nln(2n−1ln2)=nln(ln2)−ln(2n−1)
Hence L=n→∞Limln(an)=n→∞Limnln(ln2)−ln(2n−1)=n→∞Lim(nln(ln2)−nln(2n(1−2n1))) L=n→∞Lim(0−nn⋅ln2+ln(1−2n1))=−ln2
Hence, e−L=2