Q. Let $a_n(n \geq 1)$ be the value of $x$ for which $\int\limits_x^{2 x} e^{-t^n} d t(x>0)$ is maximum. If $L=\underset{n \rightarrow \infty}{\text{Lim}} \ln \left(a_n\right)$ then find the value of $e^{-L}$.
Application of Derivatives
Solution: