Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let An = ((3/4)) - ((3/4))2 + ((3/4))3 (-1)n-1 ((3/4))n and Bn = 1 - An . Then, the least odd natural number p, so that Bn > An, for all n ≥ p, is :
Q. Let
A
n
=
(
4
3
)
−
(
4
3
)
2
+
(
4
3
)
3
(
−
1
)
n
−
1
(
4
3
)
n
and
B
n
=
1
−
A
n
.
Then, the least odd natural number p, so that
B
n
>
A
n
, for all
n
≥
p
,
is :
2960
177
JEE Main
JEE Main 2018
Sequences and Series
Report Error
A
9
9%
B
7
51%
C
11
24%
D
5
15%
Solution:
Given:
A
n
=
(
4
3
)
−
(
4
3
)
2
+
(
4
3
)
3
−
⋯
+
(
−
1
)
n
−
1
(
4
3
)
n
A
n
=
(
3/4
)
(
1
+
3/4
)
(
1
−
(
−
3/4
)
n
)
=
7
3
(
1
−
(
4
−
3
)
n
)
B
n
>
A
n
⇒
1
−
A
n
>
A
n
⇒
A
n
<
2
1
⇒
7
3
(
1
−
(
4
−
3
)
n
)
<
2
1
⇒
1
−
(
4
−
3
)
n
<
6
7
⇒
(
4
−
3
)
n
>
6
−
1
⇒
n
>
6.228
⇒
n
=
7