Q. Let $A_{n} = \left(\frac{3}{4}\right) - \left(\frac{3}{4}\right)^{2} + \left(\frac{3}{4}\right)^{3} \left(-1\right)^{n-1} \left(\frac{3}{4}\right)^{n}$ and $B_{n} = 1 - A_{n} . $ Then, the least odd natural number p, so that $B_{n} > A_{n}$, for all $n \geq p,$ is :
Solution: