Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a function f satisfying the relation f(x+8)=f(x) and f(x)= begincasesx2, 0 ≤ x ≤ 2 (4-x)2, 2< x ≤ 4 2(x-4), 4< x< 6 -2(x-8), 6 ≤ x ≤ 8 endcases. The value of f(19) + f(63)+f(99) + f(-73) is equal to
Q. Let a function
f
satisfying the relation
f
(
x
+
8
)
=
f
(
x
)
and
f
(
x
)
=
⎩
⎨
⎧
x
2
,
(
4
−
x
)
2
,
2
(
x
−
4
)
,
−
2
(
x
−
8
)
,
0
≤
x
≤
2
2
<
x
≤
4
4
<
x
<
6
6
≤
x
≤
8
.
The value of
f
(
19
)
+
f
(
63
)
+
f
(
99
)
+
f
(
−
73
)
is equal to
124
135
Relations and Functions - Part 2
Report Error
A
1
B
2
C
4
D
6
Solution:
f
(
3
)
+
f
(
7
)
+
f
(
3
)
+
f
(
7
)
=
2
[
f
(
3
)
+
f
(
7
)]
=
2
[
1
+
2
]
=
6.