f(x)=∣∣1−(x−2)1∣∣ ∵2<x<∞ 0<x−2<∞⇒∞>x−21>0 −∞<−(x−2)1<0⇒−∈fty<1−(x−2)1<1 ∵0≤∣∣1−(x−2)1∣∣<∞ ∴ Range of f(x)∈[0,∈fty)= co-domain
Hence, f(x) is surjective
Let, f(x)=21⇒∣∣1−x−21∣∣=21 1−(x−2)1=21,1−(x−2)1=−21 x−21=21,x−21=23 x=4,x=38 ∴f(4)=f(38)=21 ∴f(x) is many-one (not injective)