Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a function f:(2 , ∈ fty) arrow [0 , ∈ fty) defined as f(x)=|(x - 3/x - 2)| , then f is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let a function $f:\left(2 , \in fty\right) \rightarrow \left[0 , \in fty\right)$ defined as $f\left(x\right)=\left|\frac{x - 3}{x - 2}\right|$ , then $f$ is
NTA Abhyas
NTA Abhyas 2022
A
injective & surjective
B
not injective but surjective
C
injective but not surjective
D
neither injective nor surjective
Solution:
$f\left(\right.x\left.\right)=\left|1 - \frac{1}{\left(x - 2\right)}\right|$
$\because 2 < x < \infty$
$0 < x-2 < \infty\Rightarrow \infty>\frac{1}{x - 2}>0$
$-\infty < -\frac{1}{\left(x - 2\right)} < 0\Rightarrow -\in fty < 1-\frac{1}{\left(x - 2\right)} < 1$
$\because 0\leq \left|1 - \frac{1}{\left(x - 2\right)}\right| < \infty$
$\therefore $ Range of $f\left(x\right)\in \left[0 , \in fty\right)=$ co-domain
Hence, $f\left(\right.x\left.\right)$ is surjective
Let, $f\left(x\right)=\frac{1}{2}\Rightarrow \left|1 - \frac{1}{x - 2}\right|=\frac{1}{2}$
$1-\frac{1}{\left(x - 2\right)}=\frac{1}{2},1-\frac{1}{\left(x - 2\right)}=-\frac{1}{2}$
$\frac{1}{x - 2}=\frac{1}{2},\frac{1}{x - 2}=\frac{3}{2}$
$x=4,x=\frac{8}{3}$
$\therefore f\left(4\right)=f\left(\frac{8}{3}\right)=\frac{1}{2}$
$\therefore f\left(x\right)$ is many-one (not injective)