Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a=e i (2π/3) then the quadratic equation whose roots are α=a+a3+a4+a-4+a-3,+ a-1, β = a2+a5+a6+a-66+a-5+a-2 is given by
Q. Let
a
=
e
i
3
2
π
then the quadratic equation whose roots are
α
=
a
+
a
3
+
a
4
+
a
−
4
+
a
−
3
,
+
a
−
1
,
β
=
a
2
+
a
5
+
a
6
+
a
−
6
6
+
a
−
5
+
a
−
2
is given by
2044
227
Complex Numbers and Quadratic Equations
Report Error
A
x
2
−
x
−
3
=
0
B
x
2
−
x
+
2
=
0
C
x
2
+
x
+
2
=
0
D
x
2
+
x
−
3
=
0
Solution:
Sum of roots
α
+
β
=
(
a
+
a
3
+
a
4
+
a
−
4
+
a
−
3
+
a
−
1
)
+
(
a
2
+
a
5
+
a
6
+
a
−
6
+
a
−
5
+
a
−
2
)
∴
S
=
α
+
β
=
(
a
+
a
3
+
a
4
+
a
9
+
a
10
+
a
12
)
+
(
a
2
+
a
5
+
a
6
+
a
7
+
a
8
+
a
11
)
=
a
1
+
a
2
+
…
+
a
12
=
1
−
a
a
(
1
−
a
12
)
=
1
−
a
a
(
1
−
α
13
.
a
−
1
)
=
1
−
a
a
(
1
−
a
−
1
)
=
1
−
a
a
−
1
=
−
1
∴
S
=
α
+
β
=
−
1
Note :
a
=
e
i
13
2
π
<
b
r
>
∴
a
13
=
e
i
2
π
=
1
Now,
α
⋅
β
=
(
a
+
a
3
+
a
4
+
a
−
4
+
a
−
3
+
a
−
1
)
(
a
2
+
a
5
+
a
6
+
a
−
6
+
a
−
5
+
a
−
2
)
=
(
a
+
a
3
+
a
4
+
a
9
+
a
10
+
a
12
)
(
a
2
+
a
5
+
a
6
+
a
7
+
a
8
+
a
11
)
=
a
3
(
1
+
a
2
+
a
3
+
a
8
+
a
9
+
a
11
)
(
1
+
a
3
+
a
4
+
a
5
+
a
6
+
a
9
)
(Total term = 36)
=
a
3
[
1
+
a
2
+
2
(
a
3
+
a
5
+
a
7
+
a
9
+
a
13
+
a
15
+
a
17
)
+
a
4
+
3
(
a
6
+
a
8
+
a
11
+
a
14
)
+
(
a
9
+
a
16
+
a
18
+
a
20
)
]
=
3
[
a
1
+
a
2
+
…
+
a
12
]
=
3
[
−
1
]
=
−
3
∴
Required equation is
x
2
+
x
−
3
=
0