Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $a=e ^{i \frac{2\pi}{3}} $ then the quadratic equation whose roots are $\alpha=a+a^{3}+a^{4}+a^{-4}+a^{-3},+ a^{-1}$, $\beta = a^{2}+a^{5}+a^{6}+a^{-6}6+a^{-5}+a^{-2}$ is given by

Complex Numbers and Quadratic Equations

Solution:

Sum of roots
$\alpha+\beta =(a+a^{3}+a^{4}+a^{-4}+a^{-3}+a^{-1})+(a^{2}+a^{5}+a^{6}+a^{-6}+a^{-5}+a^{-2})$
$\therefore S=\alpha+\beta=\left(a+a^{3}+a^{4}+a^{9}+a^{10}+a^{12}\right)+\left(a^{2}+a^{5}+a^{6}+a^{7}+a^{8}+a^{11}\right)$
$=a^{1}+a^{2}+\ldots+a^{12}$
$=\frac{a\left(1-a^{12}\right)}{1-a}=\frac{a\left(1-\alpha^{13}.a^{-1}\right)}{1-a}$
$=\frac{a\left(1-a^{-1}\right)}{1-a}=\frac{a-1}{1-a}=-1$
$\therefore S=\alpha+\beta=-1$
Note : $ a= e^{i \frac{2\pi}{13}}
\therefore a^{13}=e^{i 2\pi}=1$
Now, $\alpha\cdot\beta =\left(a+a^{3}+a^{4}+a^{-4}+a^{-3}+a^{-1}\right)\left(a^{2}+a^{5}+a^{6}+a^{-6}+a^{-5}+a^{-2}\right)$
$=\left(a+a^{3}+a^{4}+a^{9}+a^{10}+a^{12}\right)\left(a^{2}+a^{5}+a^{6}+a^{7}+a^{8}+a^{11}\right)$
$=a^{3}\left(1+a^{2}+a^{3}+a^{8}+a^{9}+a^{11}\right)\left(1+a^{3}+a^{4}+a^{5}+a^{6}+a^{9}\right)$
(Total term = 36)
$=a^{3}\left[1+a^{2}+2\left(a^{3}+a^{5}+a^{7}+a^{9}+a^{13}+a^{15}+a^{17}\right)+a^{4}+3\left(a^{6}+a^{8}+a^{11}+a^{14}\right)+\left(a^{9}+a^{16}+a^{18}+a^{20}\right)\right]$
$=3\left[a^{1}+a^{2}+\ldots+a^{12}\right]=3\left[-1\right]=-3$
$\therefore $ Required equation is $x^{2}+x-3=0$