A=[cosαsinα−sinαcosα] A=[cosαsinα−sinαcosα][cosαsinα−sinαcosα] =[cos2αsin2α−sin2αcos2α]
Similarly, A4=A2.A2=[cos4αsin4α−sin4αcos4α]
and so on A32=[cos32αsin32α−sin32αcos32α]=[01−10]
Then sin32α=1 and cos32α=0 32α=nπ+(−1)n2π and 32α=2nπ+2π α=32nπ+(−1)n64π and α=16nπ+64π where n∈Z
Put n=0,α=16nπ+64π where n∈Z
Put n=0,α=64π=26π
Then, the value of α is 26π=2kπ ⇒k=6