Q. Let $A = \begin{bmatrix}cos \,\alpha&-sin\,\alpha\\ sin \,\alpha&cos\, \alpha\end{bmatrix} , \left(\alpha\in R\right)$ such that $A^{32} = \begin{bmatrix}0&-1\\ 1&0\end{bmatrix}.$ If the value of $\alpha$ is $\frac{\pi}{2^k}$, then value of $k$ is
Matrices
Solution: