Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A= [ beginmatrix2&0&0 0&2&0 0&0&2 endmatrix] , then A3-6A2+12A-8I =
Q. Let
A
=
⎣
⎡
2
0
0
0
2
0
0
0
2
⎦
⎤
, then
A
3
−
6
A
2
+
12
A
−
8
I
=
1859
258
J & K CET
J & K CET 2016
Matrices
Report Error
A
⎣
⎡
0
0
0
0
0
0
0
0
0
⎦
⎤
75%
B
⎣
⎡
1
0
0
0
1
0
0
0
1
⎦
⎤
12%
C
⎣
⎡
3
0
0
0
3
0
0
0
3
⎦
⎤
7%
D
⎣
⎡
2
0
0
0
2
0
0
0
0
⎦
⎤
6%
Solution:
We have,
A
=
⎣
⎡
2
0
0
0
2
0
0
0
2
⎦
⎤
=
2
⎣
⎡
1
0
0
0
1
0
0
0
1
⎦
⎤
=
2
I
A
2
2
I
⋅
2
I
=
2
2
I
Similarly
A
3
=
2
3
I
Now,
A
3
−
6
A
2
+
12
A
−
8
I
8
I
−
6
(
4
I
)
+
12
(
2
I
)
−
8
I
=
0
=
⎣
⎡
0
0
0
0
0
0
0
0
0
⎦
⎤