Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $ A= \left[\begin{matrix}2&0&0\\ 0&2&0\\ 0&0&2\end{matrix}\right] $ , then $ A^{3}-6A^{2}+12A-8I $ =

J & K CETJ & K CET 2016Matrices

Solution:

We have,
$A = \begin{bmatrix}2&0&0\\ 0&2&0\\ 0&0&2\end{bmatrix} = 2\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix} = 2I $
$A^{2} 2I \cdot 2I = 2^{2} I $
Similarly $A^3 = 2^3I$
Now, $A^3 - 6A^2 + 12A - 8I$
$ 8I - 6(4I) + 12 (2I) - 8I = 0$
$=\begin{bmatrix}0&0&0\\ 0&0&0\\ 0&0&0\end{bmatrix}$