Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A be a 3 x 3 matrix such that A [1&2&3 0&2&3 0&1&1] = [0&0&1 1&0&0 0&1&0] Then A-1 is :
Q. Let A be a 3 x 3 matrix such that
A
⎣
⎡
1
0
0
2
2
1
3
3
1
⎦
⎤
=
⎣
⎡
0
1
0
0
0
1
1
0
0
⎦
⎤
Then
A
−
1
is :
2674
194
JEE Main
JEE Main 2014
Determinants
Report Error
A
⎣
⎡
3
3
1
1
0
0
2
2
1
⎦
⎤
46%
B
⎣
⎡
3
3
1
2
2
1
1
0
0
⎦
⎤
16%
C
⎣
⎡
0
0
1
1
2
1
3
3
1
⎦
⎤
17%
D
⎣
⎡
1
0
0
2
1
2
3
1
3
⎦
⎤
20%
Solution:
given
A
⎣
⎡
1
0
0
2
2
1
3
3
1
⎦
⎤
=
⎣
⎡
0
1
0
0
0
1
1
0
0
⎦
⎤
use column transformation and make RHS as I
(
i
)
C
1
↔
C
3
A
⎣
⎡
3
3
1
2
2
1
1
0
0
⎦
⎤
=
⎣
⎡
1
0
0
0
0
1
0
1
0
⎦
⎤
(
ii
)
C
2
↔
C
3
A
⎣
⎡
3
3
1
1
0
0
2
2
1
⎦
⎤
=
⎣
⎡
1
0
0
0
1
0
0
0
1
⎦
⎤
A
−
1
=
⎣
⎡
3
3
1
1
0
0
2
2
1
⎦
⎤