Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let A be a 3 x 3 matrix such that
$A \begin{bmatrix}1&2&3\\ 0&2&3\\ 0&1&1\end{bmatrix} = \begin{bmatrix}0&0&1\\ 1&0&0\\ 0&1&0\end{bmatrix}$
Then $A^{-1}$ is :

JEE MainJEE Main 2014Determinants

Solution:

given $A \begin{bmatrix}1&2&3\\ 0&2&3\\ 0&1&1\end{bmatrix} = \begin{bmatrix}0&0&1\\ 1&0&0\\ 0&1&0\end{bmatrix}$
use column transformation and make RHS as I
$\left(i\right) C_{1} \leftrightarrow C_{3} \,A \begin{bmatrix}3&2&1\\ 3&2&0\\ 1&1&0\end{bmatrix} = \begin{bmatrix}1&0&0\\ 0&0&1\\ 0&1&0\end{bmatrix}$
$\left(ii\right) C_{2} \leftrightarrow C_{3} \,A \begin{bmatrix}3&1&2\\ 3&0&2\\ 1&0&1\end{bmatrix} = \begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}$
$A^{-1} = \begin{bmatrix}3&1&2\\ 3&0&2\\ 1&0&1\end{bmatrix}$