Q.
Let a, b, c, p, q be real numbers. Suppose α,β are the roots of the equation x2+2px+q=0 and α,β1 are the roots of the equation x2+2bx+c=0, where β2∈/(−1,0,1) Statement-1:(p2−q)(b2−ac)≥0 Statement-2:b=pa or c=qa
2971
194
Complex Numbers and Quadratic Equations
Report Error
Solution:
Given, x2+2px+q=0 ∴α+β=−2p…(i) αβ=q…(ii)
And ax2+2bx+c=0 ∴α+β1=−a2b…(iii)
and βα=ac…(iv)
Now, (p2−q)(b2−ac) =[(−2α+β)2−αβ][(2α+β1)2−βα]a2 =16(α−β)2(α−β1)2.a2≥0 ∴ Statement 1 is true.
Again, now pa=−(2α+β)a=−2a(α+β)
and b=−2a(α+β1)
Since, pa=b⇒α+β1=α+β ⇒β2=1,β={−1,0,1}, which is correct,
Similarly, if c=qa⇒aβα=aαβ ⇒α(β−β1)=0 ⇒α=0 and β−β1=0 ⇒β={−1,0,1}
Statement 2 is true.
Both Statement 1 and Statement 2 are true. But
Statement 2 does not explain statement 1.