Q.
Let a, b, c, p, q be real numbers. Suppose $\alpha, \beta$ are the roots of the equation $x^2 + 2px + q = 0$ and $\alpha, \frac{1}{\beta}$ are the roots of the equation $x^2 + 2bx + c = 0$, where $\beta^{2} \notin \left(-1, 0, 1\right)$
Statement-1:$\left(p^{2} - q\right)\left(b^{2} - ac\right) \ge 0$
Statement-2: $b \ne pa$ or $c \ne qa$
Complex Numbers and Quadratic Equations
Solution: