Q.
Let a,b be two real numbers such that ab<0. If the complex number b+i1+ai is of unit modulus and a+ib lies on the circle ∣z−I∣=∣2z∣, then a possible value of 4b1+[a], where [t] is greatest integer function, is :
ab<0∣∣b+i1+ai∣∣=1 ∣1+ai∣=∣b+i∣ a2+1=b2+1⇒a=±b⇒b=−aasab<0 (a,b) lies on ∣z−1∣=∣2z∣ la+ib−1∣=2∣a+ib∣ (a−1)2+b2=4(a2+b2) (a−1)2=a2=4(2a2) 1−2a=6a2⇒6a2+2a−1=0 a=12−2±28=6−1±7 a=67−1&b=61−7 [a]=0 ∴4b1+[a]=4(1−7)6=−(41+7)
or [a]=0
Similarly it is not matching with a=6−1−7
No answer is matching.