Q. Let $a, b$ be two real numbers such that $a b<0$. If the complex number $\frac{1+ai}{b+i}$ is of unit modulus and $a$ $+i b$ lies on the circle $|z-I|=|2 z|$, then a possible value of $\frac{1+[a ]}{4 b}$, where $[t]$ is greatest integer function, is :
Solution: