Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A= [2 -1 -1 1 0 -1 1 -1 0] and B=A - I. If ω=(√3 i-1/2), then the number of elements in the set n ∈ 1,2, ldots, 100: A n +(ω B ) n . = A + B is equal to
Q. Let
A
=
⎣
⎡
2
1
1
−
1
0
−
1
−
1
−
1
0
⎦
⎤
and
B
=
A
- I. If
ω
=
2
3
i
−
1
, then the number of elements in the set
{
n
∈
{
1
,
2
,
…
,
100
}
:
A
n
+
(
ω
B
)
n
=
A
+
B
}
is equal to ____
1087
134
JEE Main
JEE Main 2022
Matrices
Report Error
Answer:
7
Solution:
A
=
⎣
⎡
2
1
1
−
1
0
−
1
−
1
−
1
0
⎦
⎤
⇒
A
2
=
A
⇒
A
n
=
A
∀
n
∈
{
1
,
2
,
…
,
100
}
Now,
B
=
A
−
I
=
⎣
⎡
1
1
1
−
1
−
1
−
1
−
1
−
1
−
1
⎦
⎤
B
2
=
−
B
⇒
B
3
=
−
B
2
=
B
⇒
B
5
=
B
⇒
B
99
=
B
Also,
ω
3
k
=
1
So,
n
=
common of
{
1
,
3
,
5
,
…
,
99
}
and
{
3
,
6
,
9
,
…
,
99
}
=
17