Q. Let $A= \begin{bmatrix}2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{bmatrix}$ and $B=A$ - I. If $\omega=\frac{\sqrt{3} i-1}{2}$, then the number of elements in the set $\left\{ n \in\{1,2, \ldots, 100\}: A ^{ n }+(\omega B )^{ n }\right.$ $= A + B \}$ is equal to ____
Solution: