Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A=[1+x2-y2-z2 2(x y+z) 2(z x-y) 2(x y-z) 1+y2-z2-x2 2(y z+x) 2(z x+y) 2(y z-x) 1+z2-x2-y2] then det. A is equal to
Q. Let
A
=
⎣
⎡
1
+
x
2
−
y
2
−
z
2
2
(
x
y
−
z
)
2
(
z
x
+
y
)
2
(
x
y
+
z
)
1
+
y
2
−
z
2
−
x
2
2
(
yz
−
x
)
2
(
z
x
−
y
)
2
(
yz
+
x
)
1
+
z
2
−
x
2
−
y
2
⎦
⎤
then det.
A
is equal to
190
84
Determinants
Report Error
A
(
1
+
x
y
+
yz
+
z
x
)
3
B
(
1
+
x
2
+
y
2
+
z
2
)
3
C
(
x
y
+
yz
+
z
x
)
3
D
(
1
+
x
3
+
y
3
+
z
3
)
2
Solution:
multiply
R
2
by
z
and
R
3
by y and use
R
1
→
R
1
−
R
2
+
R
3
Objective approach : put
z
=
y
=
0
then choices are
A
=
1
;
B
=
(
1
+
x
2
)
3
;
C
=
0
;
D
=
(
1
+
x
3
)
2
and determinant comes out to be
(
1
+
x
2
)
3
⇒
(
B
)