Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A=\begin{bmatrix}1+x^2-y^2-z^2 & 2(x y+z) & 2(z x-y) \\ 2(x y-z) & 1+y^2-z^2-x^2 & 2(y z+x) \\ 2(z x+y) & 2(y z-x) & 1+z^2-x^2-y^2\end{bmatrix}$ then det. $A$ is equal to

Determinants

Solution:

multiply $R_2$ by $z$ and $R_3$ by y and use $R_1 \rightarrow R_1-R_2+R_3$
Objective approach : put $z = y =0$ then choices are $A =1 ; B =\left(1+ x ^2\right)^3 ; C =0 ; D =\left(1+ x ^3\right)^2$ and determinant comes out to be $\left(1+x^2\right)^3 \Rightarrow(B)$