Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a1=b1=1 and an=an-1+(n-1), bn=bn-1+an-1, ∀ n ≥ 2. If S = displaystyle∑ n =110 ( b n /2 n ) and T = displaystyle∑ n =18 ( n /2 n -1), then 27(2 S - T ) is equal to
Q. Let
a
1
=
b
1
=
1
and
a
n
=
a
n
−
1
+
(
n
−
1
)
,
b
n
=
b
n
−
1
+
a
n
−
1
,
∀
n
≥
2
. If
S
=
n
=
1
∑
10
2
n
b
n
and
T
=
n
=
1
∑
8
2
n
−
1
n
, then
2
7
(
2
S
−
T
)
is equal to
2727
2
JEE Main
JEE Main 2023
Sequences and Series
Report Error
Answer:
461
Solution:
As,
S
=
2
b
1
+
2
2
b
2
+
……
.
+
2
9
b
9
+
2
10
b
10
⇒
2
S
=
2
2
b
1
+
2
3
b
2
+
……
.
+
2
10
b
9
+
2
11
b
10
subtracting
⇒
2
S
=
2
b
1
+
(
2
2
a
1
+
2
3
a
2
……
.
+
2
10
a
9
)
−
2
11
b
10
⇒
S
=
b
1
−
2
10
b
10
+
(
2
a
1
+
2
2
a
2
……
.
+
2
9
a
9
)
⇒
2
S
=
2
b
1
−
2
11
b
10
+
(
2
2
a
1
+
2
3
a
2
……
.
+
2
10
a
9
)
subtracting
⇒
2
S
=
2
b
1
−
2
11
b
10
+
(
2
a
1
−
2
10
a
9
)
+
(
2
2
1
+
2
3
2
+
…
+
2
9
8
)
⇒
2
S
=
2
a
1
+
b
1
−
2
11
(
b
10
+
2
a
9
)
+
4
T
⇒
2
S
=
2
(
a
1
+
b
1
)
−
2
9
(
b
10
+
2
a
9
)
+
T
⇒
2
7
(
2
S
−
T
)
=
2
8
(
a
1
+
b
1
)
−
4
(
b
10
+
2
a
9
)