Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $a_1=b_1=1$ and $a_n=a_{n-1}+(n-1), b_n=b_{n-1}+a_{n-1}$, $\forall n \geq 2$. If $S =\displaystyle\sum_{ n =1}^{10} \frac{ b _{ n }}{2^{ n }}$ and $T =\displaystyle\sum_{ n =1}^8 \frac{ n }{2^{ n -1}}$, then $2^7(2 S$ $- T )$ is equal to

JEE MainJEE Main 2023Sequences and Series

Solution:

As, $ S =\frac{ b _1}{2}+\frac{ b _2}{2^2}+\ldots \ldots .+\frac{ b _9}{2^9}+\frac{b_{10}}{2^{10}} $
$\Rightarrow \frac{ S }{2}= \frac{ b _1}{2^2}+\frac{ b _2}{2^3}+\ldots \ldots .+\frac{b_9}{2^{10}}+\frac{b_{10}}{2^{11}}$
subtracting
$\Rightarrow \frac{ S }{2}=\frac{ b _1}{2}+\left(\frac{ a _1}{2^2}+\frac{ a _2}{2^3} \ldots \ldots .+\frac{ a _9}{2^{10}}\right)-\frac{ b _{10}}{2^{11}}$
$ \Rightarrow S = b _1-\frac{ b _{10}}{2^{10}}+\left(\frac{ a _1}{2}+\frac{ a _2}{2^2} \ldots \ldots .+\frac{ a _9}{2^9}\right) $
$ \Rightarrow \frac{ S }{2}=\frac{ b _1}{2}-\frac{ b _{10}}{2^{11}}+\left(\frac{ a _1}{2^2}+\frac{ a _2}{2^3} \ldots \ldots .+\frac{ a _9}{2^{10}}\right)$
subtracting
$ \Rightarrow \frac{S}{2}=\frac{b_1}{2}-\frac{b_{10}}{2^{11}}+\left(\frac{a_1}{2}-\frac{a_9}{2^{10}}\right)+\left(\frac{1}{2^2}+\frac{2}{2^3}+\ldots+\frac{8}{2^9}\right) $
$ \Rightarrow \frac{S}{2}=\frac{a_1+b_1}{2}-\frac{\left(b_{10}+2 a_9\right)}{2^{11}}+\frac{T}{4}$
$ \Rightarrow 2 S=2\left(a_1+b_1\right)-\frac{\left(b_{10}+2 a_9\right)}{2^9}+T $
$\Rightarrow 2^7(2 S-T)=2^8\left(a_1+b_1\right)-\frac{\left(b_{10}+2 a_9\right)}{4}$

Solution Image