Let a1=b1;a2−1=b2;a3−2=b3;....... an−(n−1)=bn ∴b1+b2+……+bn=21[b12+(b22+1)+(b32+2)+……+(bn2+(n−1))]−4n(n−3) ∴∑bi=21[(b12+b22+b32+…+bn2)+(1+2+3+……+(n−1)]−4n(n−3) ⇒2∑bi=∑bi2+2n(n−1)−2n(n−3) ⇒2∑bi=∑bi2+2n(n−1)−n(n−3) ⇒2∑bi=∑bi2+n ∴∑bi2−2∑bi+∑1=0⇒i=1∑n(bi−1)2=0⇒bi−1=0,∀i=1,2,…,n
Putting i=1,2,3,…….,100 b1−1=0⇒b12=a1=1 b2−1=0⇒b22=a2−1=1⇒a2=2 b3−1=0⇒b32=a3−2=1⇒a3=3 and so on
Hence an=n ∴i=1∑100ai=1+2+3+…….+100=5050