Q. Let $a_1, a_2, \ldots \ldots ., a_n$ be real numbers such that $\sqrt{a_1}+\sqrt{a_2-1}+\sqrt{a_3-2}+\ldots \ldots+\sqrt{a_n-(n-1)}=\frac{1}{2}\left(a_1+a_2+\ldots \ldots+a_n\right)-\frac{n(n-3)}{4} .$ Compute the value of $\displaystyle\sum_{ i =1}^{100} a _{ i }$.
Sequences and Series
Solution: